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ABSTRACT

The idea of using a passive end point motion constraint
to calibrate robot manipulators 1is of particular interest
because no measurement equipment 1s required. The accuracy
attained using this method 1is compared to the accuracy
attained by an unconstrained calibration wusing computer
simulated measurements. A kinematic model is established for
each configuration using the Denavit-Hartenberg methodology.
The kinematic equations are formulated and are used in the
computer simulated calibration to determine the actual
kinematic parameters of the manipulator. The results are
discussed in terms of the effect of measurement noise and the
number of experimental observations on the accuracy of

parameter identification.
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I. INTRODUCTION

The goal of using robot manipulators as the key link in
flexible automated manufacturing systems has presented
engineers with a variety of significant problems. For a six
degree of freedom robot, the position and orientation of the
manipulator end point must be specified for each pose.
Accuracy and repeatability are the yardsticks of a robot’s
performance. Accuracy is the measure of the robot’s ability to
move to a commanded position in its workspace. Repeatability
is the measure of the robot manipulator’s ability to return to
a previously learned position. Presently, robots that are used
in industrial applications display adequate repeatability, but
do not exhibit satisfactory levels of accuracy. For most
industrial robots, repeatabilities of the order of 1 mm or
better can bo attained while the positioning accuracy may be
off by as much as 1 cm [Ref. 1l:p. 14]. For on-line programming
applications such as the traditional automated pick and place
operations where the robot manipulator must be taught the
desired motion, adequate repeatability alone is sufficient.
However, as the concept of off-line programming was developed
as a means cof automatically generating robot control programs

for tediocus applications that previously would have involved

ct

large numbers of taught tasks, the low levels of accuiracy that




robot manipulators could attain became a major roadblock to
their widespread usage.

There are several factors that adversely influence the
accuracy of robot manipulators. Among them are: temperature
variations, gear backlash and harmonics, compliance in links
and Jjoints, steady state errors in the Jjoint servo
controllers, and inaccurate knowledge of the manipulator’s
kinematic parameters. Experience has shown that the most
prevalent source of error 1s inaccurate knowledge of the
kinematic parameters that the robot controller has of the
manipulator arm. This work deals primarily with the
identification of the variations in the kinematic parameters
of the model that the robot controller has.

Even small variations in these kinematic parameters can
cause significant error in the manipulator end point
placement. The calibration process identifies the actual
kinematic parameters of the model and uses them to update the
robot controller’s model so that the manipulator end point may
be placed into a commanded position with greater accuracy. In
calibration tests performed by Mooring, Roth, and Driels [Ref.
2:p. 6] and several others, it has been shown that correction
of the kinematic errors resulted in improvement in accuracy to
the same order c¢f magnitude as the repeatability.

The process of robot manipulator calibration is
characterized by four major steps: modelling, measurement,

identification ard correction. The first ste inn  the
r




calibration process is to form a valid kinematic model of the
manipulator. The model is the fundamental relationship between
the manipulator’s kinematic parameters and the resulting end
effector pose. The manipulator model may take two basic forms.
The forward kinematic model 1s used to compute the end
effector pose given the Jjoint variable data. The inverse
kinematic model is used to determine the joint displacements
for a given pose. The kinematic model is constructed using the
Denavit-Hartenberg method with modifications. The resulting
model 1s used to define an error gquantity based on the nominal
kinematic parameter set and the unknown actual kinematic
parameter that need to be identified.

Measurement involved physically moving the manipulator end
effector to various locations in its workspace and recording
the corresponding Jjoint displacements. There are a number of
methods that have been used to obtain the data necessary for

manipulator calibraticn. Theodolites (Ref. 31, laser

s

th

inferometers [Ref. 4], cocrdinate measuring machines [Ref. 5],

ques can be used depending on the

[

and many other techn
constraints imposed by the desired level of accuracy, size,
ease of use, and cost. Alternatively, Jjoint variable data and
pose infcrmaticn can be obtained through computer simulation
with the use 0of a random number generator routine. This was

the apprcach emplcyed in this research.
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model to most closely match the measured data. This 1is
accomplished through the use of a gradient based Levenberg-
Marquardt algorithm that used the collected pose information
to identify the actual parameters by systematically changing
the nominal parameters to redu~e the previously defined error
quantity. There are several factors that influence the
identification ©process. These factors are the type of
identification routine wused, the 1initial wvalues of the
parameters tce be determined, the number of poses taken, the
influence of reasurement accuracy and noise, encoder noise,
the choice of measurement configuration, and the attainable
range of joint displacements used during the observations.
These effects are discussed in detail at a later time.

Finally, in the <correction step, these identified
kinematic parameters are used to update the rokot controller’s
model. This process, however, 1is not without its own unique
set of problems. Normally, an inverse kinematic solution using
the actual kinematic parameters 1is employed to convert the
desired off-line locations in the task space o modified
locations in the manipulator’s own joint space. The robot has
an inverse kinematic solution for the nominal model, but may
have to develop its own solution using the actual model. These
issues are beyond the scope of this research and were noct
addressed.

The purpose of this research was -o compare the accuracy

attained for two different computer simulated calibraticn




methods. The first method involves using an uncon.trained
manipulator end point and the second method employs a passive
end point motion constraint called a ballbar. These computer
simulated calibrations were performed on the Model G Compact
Master-Slave Manipulator shown 1in Figure 1. The Model G
Master-Slave Manipulator 1s a six degree of freedom
manipulator arm with five revolute joints and one prismatic
joint (5R1P). This manipulator is designed to reproduce the
natural movements and force of the human hand. The manipulator
end point will move in exectly the same manner as the operator
moves the manipulator handle. The motion is constrained only
by the dimensional 1limits o2f the manipulator itself. The
forces produced at the end point will be the same as those
forces applied at the handle with the exception of minor
losses due to unbalance and friction. This manipulator was
chosa2n for these calibrations because of its usefulness for
experiments that are concerned with probirng of objects that
can not be viewed during the probing operation to acquire
ccentact informatio:..

The fcrmat of the remainder of this thesis will be to
first conduct ar in-depth examinaticn of theory applicable to
robot calibraticn. This will be fcllowed by an analysis of the
two calibration methods used and the unigue problems with each
method., Newt, wil'l be a discussion of the results obtained
anu, finaliy, the concluslons drawn from this research will be

stated.
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II. THEORY

A. THE DENAVIT-HARTENBERG METHOD WITH MODIFICATIONS

As was discussed in the Introduction, the starting point
for any <calibration process 1s the establishment of a
representative model ¢of the manipulator. There are currently
a number of methods of generating the forward kinematic model
of a serial link manipulator. The technique that was used to
define the spatial orientation between objects and various
locations in the manipulator working volume is the Denavit-
Hartenberg method [Ref. 6] with modifications proposed by
Hayati [Ref. 7], Mooring [Ref. 8], and Wu [Ref. 9] to handle
situations in which consecutive Jjoint axes are nominally
parallel. The basic concept is to place a coordinate frame on
each of the manipulator 1links using a set of rules that
defines the origin of the frame and its orientation. The
position of consecutive links 1s specified by a homogeneous
transformation matrix, which transforms the frame fixed on
link n-1 into the frame fixed on link n. This transformation
is composed of more fundamental transformations representing
three basic translations along the x, y, and z axes and three
rotations about those same axes. These 4 x 4 matrix

transformations are expressed as follows:




100 x
010y
= 1)
Trans (X, y, z) 001 2 (
0000
1 0 0 0
0 cosB, -sinB, 0
ROT ( x, 8y) = o ¥ (2)
0 sinBy cos@, 0
| 0 0 0 1 |
Fcosey 0 sinQyO
0 1 0 0
ROT , 0 = (3)
OT (v, By -sin@, 0 cosBy, 0
o 0o 0 1|
cosB, -sinB, 0 0
ROT (2, 0,) = sin@, cosB, 0 0 (4)
0 0 10
0 o 01 |

where trans (x, y, z) describes a translation given by the
vector r = [x, y, z] and ROT (x, 0,) describes a rotation of
0, about the x-axis of the coordinate frame.

With the aid of Figure 2, the Denavit-Hartenberg
transformation methodology can be illustrated. First, the axis
of Jjoint motion must be identified and the z-axis must be
aligned with the axis of joint motion. Next, the common normal
between consecutive joint axes must be identified.

Then, the origin of coordinate frame n is located at the

intersection of joint axis n+l and the common normal between




Jutnt u/ \jolnt nt]

1ink n-1 6
p—

~— link n

Tink nl?

Figure 2. Placement of Coordinate Frames.




axes n+l and n. the z axis of coordinate frame n is always
aligned with joint axis n+l and the x axis is always aligned
along the common normal between consecutive Jjoint axes.
Transforming frame n-1 to frame n is accomplished by the
following sequential steps:
* Rotate frame n-1 about axis z,.- by an angle 8., the joint
angle.
* Translate along axlis z... a distance d., the offset.

* Translate along the rotated x...- axis, a distance a., the

link length. -
* Rotate about axis x. by an angle ., the twist angle.

* Rotate about axis y. by an angle B.

Incorporating these rules with the transformation matrix
format specified in Equations 1, 2 and 3, the transfcrmation

from frame n-1 to frame n is expressed in the following form:

An = ROT(z,08,) Trans (z,d,) Trans (x, a,) ROT (x,a,) ROT (y, B,) (5)

Performing the matrix mnultiplications gives the resulting

form:

ce,cp,-s6,sa,sp -s8,ca, O, ,5p,+50.5a,CB, a,cl;

) 50,cB,+ €O, 5a,58, c8,ca, SO,S5Pp,-C6,5a.Cf, ansej (6)
-ca,sB, sa, ca,CB, d, |
0 0 0 1 J

-

In meost cases, four out of the five transformations are
necessary tc¢ transform frame n-1 into frame n. For revolute

joints, the parameters dn, a. and o. are constants diczated by

the geometry cf the manipulatcr and 6. 1s the argular Zcint

uﬂ

-
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variable. The parameter B is defined only in cases where
consecutive coordinate axes are parallel and, in these
instances, d., is normally set to zerc. When consecutive axes
are parallel, there is no unique common normal. The B,
parameter allows for small amcunt of inclination between the
axes. For prismatic joints, the location of the origin of the
coordinate system is determined by extending the axis so that
it intersects the axis of the next 3Jjoint. This makes the
length cf the common normal, a., and the next Jjoint offset,
d..., both equal to zero. Therefore, for prismatic joints, d.
is the joint variable and the link geometry is described by 6.
and ..

In order for a robot manipulator to have complete
dexterity in its working volume, it must have six degrees of
freedom. For a six joint six 1link manipulator, the

transformation from frame 5 to frame 6 takes the form

A, = ROT (z, &g ) ROT (y, 8¢ ) ROT ( X, Wg) Trans ( Dy, Dyss Prs)  (7)

where the rotations are sequentially defined as roll, pitch
and yaw [Ref. 1C]. The transformation from the base coordinate

frame tec the manipulator end link is:

Te= A1A8A4AH¢ (8)
Any sulitable calibration model must be, in Everett’s terms

[Ref 11], complete. Completeness refers to the model’s ability

t

o relate Jjcint isplacements to the tool pose fcor a

manipuiator while allowing for the arbitrary vlacement of the
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world coordinate frame and arbitrary assignment of the
manipulator’s zero position. In other words, the model must
have the prope:r number of identifiable parameters to account
for variations in those parameters. The required number of
independent kinematic parameters is the same as the number of
constraint equations necessary to specify the tool pose and
joint frames. Mooring, Roth and Driels [Ref. 2:p. 43] have
concluded that for each revolute Jjoint, four independent
kinematic parameters are needed and for each prismatic joint,
two independent kinematic parameters are required. The
required number of independent kinematic parameters N, can be

determined from the following equation.

N =4R + 2P + 6§ (9)

R is the number of revolute joints and P is the number of
prismatic joints. An additional six parameters are specified

in c¢rder to obtain an independent tcol frame location.

B. PARAMETER IDENTIFICATIONS

Tne flowchart in Figure 3 outlines the calibration process
up through the identification step. First, the range of motion
for each joint and the number of observations to be made must
be determined. Next, sets c¢f Jjoint wvariables for each
Observations are c¢btained with the use of a random number
generator program. The forward kinematic model of the G5SRIP

manipulator is then applied to generate pose data for each cof




Joint Motion Range

Number of Observations
Generate Joint Variable Data
Nominal Parameters ___ Compute Actual
+ AP End Effector Position

Encoder Noise ——=— @ @ —— Measure Noise

Nominal Parameters — Non-Linear Least Squares
Parameter Identification

U

Identified Kinematic Parameters

Figure 3. Flowchart of Calibration Process.
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the observations using the joint variable data and manipulator
link parameters. The kinematic parameters used in this forward
kinematic sclution are the nominal kinematic parameters plus
a known error parameter, AP. The error parameter can take the
form of a length error or an angular error as is appropriate
for each of the parameters that is to be identified. The
result of this application is a simulated known manipulator
pose for each of the joint variable sets. The random noise of
measurement and encoder noise were superimposed on the pose
data and joint variables respectively.

The simulated observation data and the nominal kinematic
parameters are the inputs to an identification program ID6.
ID6 initializes the nominal kinematic parameters and feeds
them to an identification subroutine ZXSSQ which numerically
estimates the gradient and wuses it to produce improved
predictions of the kinematic model parameters. ZXSSQ employs
a subroutine that takes the current parameter estimates and
calculates an error between the model predictions and the
simulated observaticn data. ZXSSC uses the error to determine
the gradient. The cycle continues until convergence criteria
is met. The parameter estimation 1is treated as an
unconstrained non~-linear optimizaticn problem. Figure 4 shows
a flowchart of the process.

ZXSSQ is a finite difference, Levenkerg-Marguardr routine
that is taillcred for non-linear least squares problems [Ref.

2:pp. 135-13%]. The best way tc illustrate its use 1s through

{2
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+ ; + —_—

! Known AP Unknown AP
ﬂ —
!
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‘ 1 Variable Data
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| ,
| |

Measured Pose Matrix! Estimated Pose Matrix

Tm | T
|
AT=T-TM
Pose Error
|
| ZXSsQ
Changes Unknown AP
| To Minimize Pose Error

Figure 4. Flowchart of Identification Process.
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an example. Consider the simple two link manipulator in Figure
5. What values of 0. and 6, will put the manipulator end point
at point Q2 If P=F(0., 0.), €. and 0, are known link lengths,
and Q 1s a known position in the two dimensional workspace,
the problem is to find 6. and 0, such that the quantity z=(P-Q)
approaches zero. In two-dimensional matrix notion, the
equations are as fo.lows:

x p -0, 0.cosB +l.cos (0.+8,) -0, | (10)

> - - -

Ve P, -0, " 1e.sinB. +0.sin (0. +6.) -0

Where ., and y, are the difference between the estimated and
kncwn parameters in the » and y directions respectively. The
Levenberg-Marguardt algorithm uses this error gquantity to
numerically estimate the gradient and produces updated 9. and
©. wvalues. The ©process continues until redetermined
convergence criteria are met and 0. and 0. will be the values
needed to put the manipulator end point at point Q. A more
detailed explanation of the 2ZXSSQ algorithm is given 1in
Appendix A.

According to Eguation 9 for the 5R1P manipulator used in
this study, it would be expected that 28 kinematic parameters
would have to be identified. It will later be seen that this
number will have to ke altered to meet the particular needs of

the measurement method employed and to achieve satisfactory

parameter identificaticn.
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Figure 5. Simple 2-Link Manipulator.




III. CALIBRATION METHODS

A. UNCONSTRAINED METHOD

This method involves establishing a wvalid forward
kinematic model using the Denavit-Hartenberg methodology and
using this model to generate the manipulator poses that will
be input to the identification program. Employing the Denavit-
Hartenberg criter‘a previously discussed to the Model G
Master-Slave Manipulator produces the model shown in Figure 6.
The location of the world coordir.ate is arbitrary and it was
fixed in the position shown only because it was a convenient
reference frame for measurements. The location of the base
frame of the manipulator 1i1s also arbitrary as long as 2, is
aligned with t»e first Jjoin 2a-is. The remainder of the
coordinate frames were allocated 1in accordance with the
Denavit-Hartenberg Methoua. Tne transformation from frame 2 to
frame 3 required the use of the parameter f, Dbecause
coordinate frames 2 and 3 are nominally parallel ([Ref. 12].
The definition of frame 6 is arbitrary and, 1in general, the
transformation from frame 5 to frame 6 reguires three
translations and three rctations. However, since frame 6 was
chosen to be offset from the origin of coordinate frame 5, its

orientation is undefined. Therefore, only three parameters are

required to transform frem frame 5 to frame 6 and at least one




X2

Figure 6. Denavit-Hartenberg Model of Master-Slave
Manipulator (Unconstrained Method)




0f these parameters must be a displacement otherwise no
movement of the origin of frame 5 would occur.

The parameters ¢,, px, and pz. were chosen to define the
transformation from frame 5 to frame 6 because the identified
deviation from the nominal value of ¢, is composed of the
encoder o' set 80, and the constant offset 8¢, as well as the

joint variable 6.. The definition of ¢, is as follows:
(])6=96+596+8(1)6 (11)

The transformation from frame 5 to frame 6 can be expressed in

a reduced form
A,=ROT (z, ¢.) TRANS (p,., 0, pP,.) (12)

As was discussed previously, in order for a calibration
model tc be valid, it must satisfy the completeness criteria
specified in Equation ¢. The required number of identifiable,
independent kinematic parameters must equal the number of
constraint equations needed to define the tool pose [Ref. 2.p.
42]. Using the completeness criteria, it 1s expected that
there must be 28 identifiable kinematic parameters in order to
have a valid model of a 5R1P manipulator. However, because
cnly three parameters instead of six were used to specify the
transformation from frame 5 to frame 6, the required number of
independent kinematic parametercs is 25 for this calibration
process.

There were some unique problems encountered applying the

Denavit-Hartenbera methodology to the Model G Master-Slave

20




Manipulator. The prismatic joint, in particular, regquires some
modifications to the Denavit-Hartenberg model. Because the
location ¢f frame 3 1is defined by the common normal between
axes 4 and 5 and the prismatic joint axis (frame 3) 1is not
fixed in space, the prismatic joint axis is free to move and
it moves through the origin of frame 3 [Ref. 1:p. 18].
Consequently, the parameters a; and d, are always zero. In
addition, the parameter 6. must be set at a constant value
because it cannot be identified independently from 6, for this
manipulator configuration. Table I shows the table of the
nominal kinematic parameters. The parameters that are defined

to be zero are in boldface type.

TABLE I. NOMINAL KINEMATIC PARAMETER TABLE
(UNCONSTRAINED CASE)

56, d, a, o, B. l
DEG mm mm DEG DE
0.0 0.0 1492.3 90.0 0.0
Link # 86 d. a. o B.
DEG mm mm DEG DE
1 0.0 0.0 0.0 -90.0 0.0
2 9G.0 0.0 0.0 -90.0 0.0
3 0.0 730.3 0.0 0.0 0.0
4 -90.0 0.0 82.55 90.0 0.0
5 9C.0 0.0 0.0 90.0 0.0
30, 0. 3 P PYe PZ
DEG DEG DEG mm mm mm
0.0 0.0 0.0 50.8 0.0 50.8

Having established a valid,
Master-slave Manipulator,

variable data for a variety of manipulctor

21
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working model of the Model G

the task was then to obtain joint

This was




accomplished using Program JOINT. Program JOINT uses a random
number generator subroutine to generate the Jjoint variable
data and then stores it in a data file called TELE-VAR.DAT.
Program JOINT is run a second time to obtain joint variable
data that will be used in a verification program that will be
described in more detail later. This second set of Jjoint
variable data is stored in file POSEVER.DAT.

The next step 1s to generate pose information for the
Model G Manipulator simulation. Program POSE reads the joint
variable data from file TELE-VAR.DAT and the table of nominal
kinematic parameters from file INPUT.DAT and computes the
manipulator pose using a forward kinematic solution. The set
of joint variables and the corresponding manipulator end point
pose information are stored in file TELE-POS.DAT. In program
POSE, estimates of measurement noise and the encoder offsets
are added to the data through INPUT.DAT.

The actual kinematic parameters are identified by program
ID6, using the previously discussed non-linear least squares
method. Program ID6 consists of three main components. The
first component is where the nominal kinematic parameters are
read from INPUT.DAT and the pose data for each observation are
read from TELE-POSE.DAT. The program then defines the initial
values of the model and the parameters required by the
identification subroutine ZXSSQ are initialized. The
identification subroutine ZXSSQ is the second major component

of program ID6. The details of how ZXSSQ works can be found in
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the parameter identification section of Chapter II and in
Appendix 2. ZXSSQ iteratively estimates the gradient and uses
the estimate to produce an updated approximation of the model
parameters. The cycle continues until the kinematic parameters
are identified consistently to fcur significant figures. The
third major component of program ID6 is the subroutine TELE-
ARM which takes the current estimate of the model parameters,
computes a forward kinematic solution using the estimated
parameters, and then calculates the error between the model
prediction and the measured pose data. This error is, in turn,
used by ZXSSQ to determine the gradient. The output of program
ID6 is file RESULT.DAT which —consists o©of the actual,
identified kinematic parameters of the manipulator and the
calculated RMS difference between the nominal and identified
kinematic parameters. The RMS qgquantity is brcken down into
length and angular error parameters (K, and K;) respectively.
These error parameters reflect the accuracy o0f the
identification process.

The final stage of the computer simulated calibration
process 1s a verification program designed to determine the
accuracy that the manipulator could attain if the identified
kinematic parameters were to replace the nominal parameters in
the manipulator’s ccntroller. Program VERIFY reads the ncominal
kinematic parameters from INPUT.DAT and the identified
parameters from RESULT.DAT and computes separately for each

set ¢of parameters a ferward kinematic sclution. These

r
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solutions are used to calculate the differential position and

orientation matrix.

0 -8, 8, adx
6, 0 -8, dy

AT=| ? (13)
-8, 3, 0 dz
0 0 0 O
The position error is calculated as follows:
POSERR =\dx?+dy’+dz’ (14)

The position error 1s indicative of the accuracy of the
calibrated manipulator. Figure 7 shows a flowchart of the
programs used in the simulated calibration process. These

programs and data files can be reviewed in Appendix B.

B. CONSTRAINED (BALLBAR) METHOD

The ballbar method involves the use of a passive end point
motion constraint to obtain pose data. The end point of the
manipulatcr is connected to a fixed point on a table by means
cof a ballbar of known length. Figure 8 shows the Model G
Master-Slave Manipulatcr configuration with the ballbar of
length 552.8 mm attached. This ballbar length was obtained by
fixing the ballbar at a locaticn very near the manipulator end
point when it is in the zero position. The other end of the
bar was connected to the manipulatcr end point. The ballbar
was then cycled through its reachable volume while constrained

by the dimensional limits of the manipulator. This approximate
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| TELE-VAR.DAT
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INPUT.DAT ID6

RESULT.DAT

! ¢

Figure 7. Programs Used in Unconstrained Calibration Process
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bar length was chosen because it maximized the possible range
of joint displacements.

The coordinate frames were allocated in accordance with
the Denavit-Hartenberg criteria. With the exception of the
world coordinate frame, the coordinate frames were positioned
exactly as they were for the unconstrained calibration.
However, special consideration must be given to the choice of
world coordinate frame. If it is assumed that all the Mocdel G
Manipulator joint displacements are fixed, a rotation of frame
0 relative to the world frame results in a change of the
manipulator end point (the origin of frame 6) coordinates in
the x,, v., z, frame. The distance between the world coordinate
frame and manipulator end point is the fixed length of the
pallbar and it remains unchanged. Since the relative rotation
between the world frame and the base frame cannot be measured
the conclusion is that this rotation cannot be identified.
tience, it 1s logical that the world coordinate frame selected
be orthogonal to the base frame. The location of the base
frame 1s arbitrary as long as the z. axis is aligned with the
first jcin* axis.

The transformation from the world coordinate frame to the
base frame is a function of the parameters %, vy., and z, only.

Because parameters 1z, and d. are measured 1in the same

direction, they cannot both be identified. Therefore, the
parameter z, is set to zero. The transformation from the world

coordinate frame to the base frame can be expressed as fcollows
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Figure 8. Denavit-Hartenberg Model of the Master-Slave
Manipulator (Ballbar Method)
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A_=TRANS (%, y.,, 0) (15)

w’

In addition, it has been determined the parameters x_,, V., and
00 are not independent. The parameter 66. cannot be identified
and was set to zero. The table of nominal kinematic parameters
for ball method calibration of the Model G Manipulator is
shown in Table II. The parameters in bold face type were not
identified in the calibration process. For the ballbar
calibration method, there are 22 kinematic parameters that

must be identified.

TABLE II. NOMINAL KINEMATIC PARAMETER TABLE
(CONSTRAINED CASE)

X Yu 2y
mm mm mm
1242.7 -132.95 0.0
Link # 36 d. a. o B.
1 0.0 0.0 0.0 -96.0 0.0
2 90.0 0.0 0. -90.0 0.0
3 0.0 0.0 0.0 0.00 0.0
4 -90.0 6.0 82.55 90.0 0.0
| S 90.0 0.C 0.0 90.0 0.0
Il 30, ) v PX. PYe Pz
DEG DEG DEG mm mm mm
|| 0.0 0.0 0.0 50.8 c.0 50.8

As in the unconstrained calibration prccess, the simulated
P ’

ballbar method calibration of

accomplished with

of the programs used is shown in

the Model

Tl e
FLgure

—~

series of computer prcgramc.
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o I";dri‘pu..d\,CI 1S




—
TELEBAR "'\ POSEVER.DAT}——

\ FORWARD |
J‘"" TELE-SOL.LAT

INPUT.DAT

™ RESULT.DAT |

L VERIFY rj______-l

rams Used in Constrained (Ballbar)

Figure 9. Prog
Calibration process

29




is fixed at 552.8 mm and at each end of the bar is a ball
joint capable of 90 of soiid angle rotation. One end cf the
bar ig cttached to a fixed point in space and the other end is
attached to the end flange of the Model G Manipulator. Pose
information is created in program TELEBAR by using a random
number generator routine to generate the angles that the bar
makes with the z, and y, axes (Figure 9). The position of the

ballbar end point is
(%, v, 2] =R[0,0,0, 17" (16)
where the transformation R is defined as follows
R=ROT (z,0) ROT (y, ¢ ) TRANS (x, r) (17)

For each pose, the distance d from the manipulator end
point to the origin o¢f the world coordinate frame 1is

calculated using

GV y s (18)

where x, y, and z are the coordinates of the manipulator end
point in space reiative to the world coordinate frame. Program
TELEBAR emplcys the previously discussed non-linear least

squares algorithm 2ZXSS¢ to minimize the function

F<

d -0 (19)
where € is the length o¢f the ballbar subroutine ZXSSQ
iteratively estimates a gradient and produces an approximation

of the joint displacements necessary tc estapblish the current

()
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Yw

X.Y.2)

Xw
Iw

Figure 10. Kinematics of Ballbar
pose. ZX3SSQ uses subroutine TELE-ARM to compute the forward

kKinematic scluticon ©f the manipulator using the current values
of joint displacements. TELE-ARM calculates F. which is used
by Z2X3SQ to determine the gradient. The cycle continues until
the joint variables for the pose are consistently identified
to four significant figures. The Jjoint displacements are
ELE-SOLN.DAT. Program TELEBAR is run a second
time to generate joint variable displacements for use in the

verificaticn phase. The second set of Jjoint variables is

Program FORWARD is used to check the validity of the jecint

variabie data generated by program TELEBAR. Proaram FORWARD




computes the forward kinematic solution for the Model G
Marniipulator for each set of joint displacements. The distance
d from the manipulator end point to the world coordinate frame

is
d=yx?+y®+z? (19)

where x, y, and z are the coordinates of the manipulator end
point relative to the world coordinate frame. If d equals the
length ©of the ballbar, the corresponding set of Jjoint
displacements is valid. Program FORWARD is not a part of the
calibration process, but it is an expeditious way to check the
joint variable data.

As in the unconstrained calibration process, the
identification of the actual kinematic parameters o¢f the
manipulator is accomplished by progran ID6. Program ID6 reads
the nominal kinematic parameters from INPUT.DAT and the pose
information from TELE-SOLN.UAT. The actual kinematic
parameters of the imanipulator are stored in file RESULT.DAT.
Program VERIFY calculates the accuracy of the manipulator
using the actual identified kinematic parameters as was
explained earlier. These computer programs are shown in

Appendixz B.
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IV. DISCUSSION

In order to obtain a satisfactory comparison of the two
calibration methods, a number of comput 2r simulated
calibrations were performed on each configuration. In these
simulations, the indeprendent variables were the number of
observations taken and the level of measurement noise present.
The dependent variables were the accuracy of parameter
identification and the manipulator accuracy using the
identified kinematic parameters. The results are shown in
Figure 11  through Figure 18. For the unconstrained
configuration, the low noise value was set at 0.1 mm. The
accuracy of parameter identification and the position error
were each separately plotted against the number of
observations. The same procedure was repeated with the
measurement noise increased ten times to 1.0 mm. The entire
prccess was again repeated using the low and high noise levels
for the ballbar configuration.

In general, accuracy of parameter identification increased
and the position error decreased as the number of observations
increased regardless of noise level and calibration
configuration used. For the low noise level, the calibrated
manipulatcr accuracy is of the same order of magnitude as the
attainable repeacabiiity (0.15 mm) for this type ©of

manipulator. This suggests that in the presence of a readily
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attained low 1level of measurement noise (0.1 mm) the
manipulator accuracy attained using the ballbar method is
roughly equal to that attained using the unconstrained method
and 1is, 1in fact, quite satisfactory. In addition, the
manipulator accuracy can be improved by increasing the number
of observations taken during the measurement phase of the
calibration. There reaches a point, however, when making
additional observations produces no marked improvement in
manipulator accuracy. Table III is a table of the nominal and
identified kinematic parameters for the unconstrained
calibration using low noise and 60 observations. Table IV
shows the same parameters for the ballbar calibration using
low noise and 55 observations.

When the high noise level (1.0 mm) was used, the position
error obtained using the ballbar method was unsatisfactory
even when a large rumber of observations were made. For the
unconstrained case, the position error was an order of
magnitude higher than it was using the low noise level. The
ability to obtain high manipulator accuracy 1is directly
dependent on the effectiveness with which noise can be
eliminated from the measurement process. In actual
calibrations, the reduction of measurement noise is a pivotal
step in the process.

For calibrations of serial link manipulators, the ballbar
method has been proven to be a convenient alternative to the

use cf expensive ancillary measurement equipment. With this in
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Figure 11. Accuracy of Parameter Identification/Low Noise
(Unconstrained Method).
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Figure 12. Manipulator Accuracy/Low Noise
(Unconstrained Method).
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Figure 13. Accuracy of Parameter Identification/Low Noise
(Ballbar Method).
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Figure 14. Manipulator Accuracy/Low Noise (Ballbar Method).
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Figure 15. Accuracy of Parameter Identification/Noise x 10
(Unconstrained Method) .
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Figure 16. Manipulator Accuracy/Noise x 10
(Unconstrained Method).
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Figure 18. Manipulator Accuracy/Noise x 10
(Ballbar Method).
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TABLE III. NOMINAL AND IDENTIFIED KINEMATIC PARAMETERS USING
UNCONSTRAINED METHOD WITH LOW NOISE AND 60 OBSERVATIONS

PARAMETER NOMINAL VALUE IDENTIFIED VALUE
56, 0.0 1.00093
d, 0.0 0.26324
a, 1492.3 1492.54560
a, 90.0 91.00015
06. 0.0 0.99907
d. 0.0 0.28461
a- 0.0 0.25271
o -90.0 -89.00049
06. 90.0 90.99987
d. 0.0 0.24319
a. 0.0 0.25737
o -90.0 -88.99892
d, 730.3 730.55844
a. 0.0 1.00002
B 0.0 0.99810
00. -90.0 -89.00627
a. 82.55 82.78718
. 90.0 90.97766
06 90.0 91.02502
d. 0.0 0.26702
a. 0.0 0.23813
o 90.0 91.04527
00. 0.0 0.993¢64
P, 50.8 51.01315
Pz, 50.8 51.04286

hand, an effort was made to determine which world coordinate
frame lccations yielded the smallest manipulator position
error. Referring back tc Figure 8, the x-coordinate of the
world coordinate frame which is the distance to the first

was set at eaclhl of the following three values:

[¢2]

S A e ve d
Jwalio dnm L

(W
O




TABLE IV. NOMINAL AND IDENTIFIED KINEMATIC PARAMETERS USING
BALLBAR METHOD WITH LOW NOISE AND 55 OBSERVATIONS

lLPARAMETER NOMINAL VALUE IDENTIFIED VALUE
X, 1542.7 1543.20468

y. -132.95 -132.73788

d. 0.0 0.23486

, 0.0 0.26105

I o -90.0 -89.00081
| 80, 90.0 91.00244
d 0.0 0.31004

a 0.0 0.30212

a -90.0 -89.00261

d. 0.0 0.42076

a 0.0 1.00434

B 0.0 1.00388

30, -90.0 -89.00484

a, 82.55 82.81179

o, 90.0 90.98414

06, 90.0 91.01540

d. 0.0 0.24605

a. 0.0 0.23570

a. 90.0 90.98934

36, 0.0 1.01387

Px, 50.8 50.65428

Pz, 50.8 50.65121

x=1292.7 mm, 1542.7 mm, and 1792.7 mm. At each of these x-
coordinate levels, the world coordinate frame was positioned

at each node of a five by five y-z grid and the position error
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was computed at each location. Figure 19, Figure 20, and
Figure 21 illustrate the results. The location of the world
coordinate frame does not significantly influence the position
error cbtained as long it is within the manipulators working
volume.

The ballbar method is ideal for calibration of industrial
robots in that it is quick, inexpensive, and simple to
perform. The manipulator can be calibrated in place without
the use of expensive measurement and the ballbar calibration
method can produce manipulator accuracy of the same order of

magnitude as other more costly and tedious methods.
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Figure 19. Position Error at x=1292.7 mm.
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Figure 20. Position Error at x=1542.7 mm.




ERROR

0.507
0.451
0.49]
0.36]
0.397
0.25"
0.207
0.16]
0.10]

0.057]

0.007

-100

200

e

298

Figure 21.

Position Error at x=1792.7 mm.
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V. CONCLUSIONS

In general, accuracy of parameter identification and
manipulator accuracy increased as the number of
observations taken increased.

Accuracy of calibration process is directly related to the
extent that measurement noise 1s reduced.

Bailbar method produces manipulator accuracy of the same
order as the unconstrained method and it 1s less
erpensive, quicker, and easier to perform.

The lcocation of the ballbar does not significantly
influence the accuracy of the calibration as long as it is
within the robot’s working volume.

s
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APPENDIX A: ZXSSQ

ZXSSQ is a Levenberg-Marquardt finite difference routine
for solving non-linear least squares. The problem can be
stated as follows:

Given M non-linear functions F,, F,, ..., F, of a vector

parameter x, minimize over x
F (x) =F,(x)?+...+F (x)°

where x = (%, %,, ...,%) 1s a vector of N parameters to be

estimated. When fitting a nonlinear model to data, the

functions F. should be defined as follows:

F.(x)=y.-g(x;v!) i=1,2, ..., M

where Y. is the 1" observation of the dependent variable

veoo= (V, Ve, , . . v..,')) 1s a vector containing
the i°* >bservatlon of the NV independent variables

is the function defining the non—linear model

\Q

ZX58Q iz based on a modification of the Levenberg-Marquardt
algorithm which eliminates the need for explicit derivatives.

Let % be an 1initial estimate of x. A seqgquence of

approximations to the minimum point is generated by

xXf=xto [ D, +JiJ ]I F(x7)

where is the numerical Jacobian matrix evaluated at x°

‘C‘l

D. is a diagonal matrix equal to the diagonal of J.°J.

. is a positive scaling factor
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"hen forward differences are used, the Jacobian is calculated

by

L P (x+h.u)-F. (x)]
hy - S -

where u. is the j" unit vector
h. = max(|x.|, 0.1) eps®’

eps 1s the relative precision of floating point
arithmetic

For central difference, the Jacobian is as follows

2th[Z-“;(x*rhjuj)—Fj(><:—hjuj)]
Finally,
= + 1 e+’ - r - b
Jp: =, m[F(x ) ~F(x")-J.08)]98
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APPENDIX B: COMPUTER PROGRAMS

C*‘k*****x**t****************‘k**x***************‘k*************t***’k********

PROGRAM JOINT

C This program generates the joint variable data fcr the
C MODEL G manipulator simulation by random methods.

INTEGER I, J, K, NOBS, MAXNOBS
PARAMETER (MAXNOBS=360)
REAL Q(MAXNOBS, 6), QMIN(6), QMAX(6)

COMMON /C1/ ¢, QMAX, QMIN

C DATA QMIN/ -160.0, -223.0,-52.0, -110.0, -100.0, -266.0 /

c DATA QMAX/ 160.0, 43.0, 232.0, 170.0, 10¢.0, 266.0 /

C WRITE (6,*) ’'Volume is MAX-POSSIZ3LE’
DATA QMIN/ -180.0, -180.0, 0.0, -180.0, -180.0, -180.0 /
DATA QMAX/ 180.0, 180.0, 762.0, 180.0, 180.0, 180.0 /

WRITE (6,*) ‘Volume is FULL’

C DATA QMIN/ -90.0, -90.0, -90.0, -90.0, -90.0, -90.0 /

C DATA QMAX/ 90.0, 90.0, 90.0, 90.0, 90.0, 90.0 /

C WRITE (6,*) ’'Volume is HALF'

C DATA QMIN/ -45.0, -45.0, -45.0, -45.0, =-45.0, =-45.0 /

C DATA QMAX/ 45.0, 45.0, 45.0, 45.0, 45.0, 45.0 /

C WRITE (6,*) ’'Volume is QUARTER’

C Open output data file

OPEN (18, NAME='TELE-VAR.DAT’, STATUS='NEW’)
C Input number of observations from data file

OPEN (19, NAME='INPUT.DAT’, STATUS='CQOLD’)

DO I=1,10
READ (19, *)
ENDDO

READ (19,*) NOBS
WRITE (*, *) 'NOBS=’,NOBS
CLOSE (19)
C Call the generation routine
CALL MSPREAD (NOBS)
C Save the joint variable data

DO II = 1, NOBS
WRITE (18,*) Q(II,1),0Q(II,2),Q(II,3),Q(I1,4),Q(II,5),Q(II,6)
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ENDLCO
CLOSE (18)
STOP

END

C XK AR KKK AR KKK KKK KA KKK KK KKK KRR KK KKK AR KA KK KRR AR KKK XA AR KRR K KRN R R KKK K
SUBROUTINE MSPREAD (NOBS)

This subroutine generates the joint data by the Monte Carlo methcd.
The six joint variables are generated from six independant
uniform randem variables.

aO00

INTEGER I, J, K, NOBS, MAXNOBS
PARAMETER (MAXNOBS=360)

REAL Q(MAXNOBS, 6), QMIN(6), QMAX(6)
INTEGER*4 ISEED

REAL MAGQ (6) , NUM

COMMON /Cl/ Q, OQOMA¥X, OMIN
C Get the random seed

WRITE (6,*) 'Type in a 6-digit random number seed’
READ (5,*) ISEED

C Calculate the Scaling factor for each random variable
po 1 =1, 6

MAGQ (I) = QMAX(I)-QOMIN(I)
ENDDO

C Generate the joint data

1, NOBS
1, 6

o

CALL RANDOM (ISEED,NUM)

Q(J,I) = QMIN(I) + MAGQ(I) * NUM
ENDDO

ENDDO

RETURN
END

C xR R xRk kA kA AR AR AR R R R KR KKK IRk Kk kA AR AR AR RN A AR AR AR KA A Ak k kX kKK KK KKK KK KK
SUBROUTINE RANDOM (x, 2z}
REAL FM, FX, 2
INTEGER A, X, I, M
DATA I/1/

F (I .EC. 0 ) GC TC 1000
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1000 X= MOD( A*X ,M)
FX= X
2= FX/ FM

RETURN
END

C Hok ok ok ok K Rk kR KA Kk kok Ak Rk Kk %k R ok kR K Kk %k %k ok %k % %k T o o ok ok ok ok ok e Sk sk e ok ok ok ok ok sk sk ok ok sk ok Rk ko ko ok ok
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C AAAX XX AT A A XA AKX A X R R A AR A A A A A AKX AR AR AR AAKR KA A AR XA RA AR AKX AR AR AR X AR K X

PROGRAM PCSE

C This program generates the pose data for the MODEL G manipulator
C simulation. It reads the joint variable data from file TELE-VAR.DAT.

INTEGER*4 ISEED

REAL*8 RNX, RNY, RNZ, MAGNX, MAGN1
REAL*8 RN1, RN2, RN3, RN4, RNS5, RN6
INTEGER I, J, K, NOBS, MAXNOBS, N
PARAMETER (MAXNOBS=360)

REAL*8 DANGLE, DLENTH

REAL*8 PI

PARAMETER (PI=3.141592653583793)

REAL*8 DTW, DT1, DT2, DT3, DT4, DTS

REAL*8 DDW, DD1, DD2, DD3, DD4, DD5

REAL*8 AAW, AAl, AA2, AA3, AA4, AAS

REAL*8 ALW, ALl, AL2, AL3, AL4, ALS

REAL*8 BLW, BL1, BL2, BL3, BL4, BL5S

REAL*8 DF6, FIé, TH6, SI6, PX6, PY6, Pz6, D3

REAL*8 THETAl, THETA2, THETA3, THETA4, THETAS, THETAG
REAL*8 THW, TH1, TH2, TH3, TH4, TH5

REAL*8 TW(4,4), T1(4,4), T2(4,4), T3(4,4)

REAL*8 T4(4,4), T5(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)
REAL*8 TIMAT(4,4), T(4,4)

C Initialize the TIMAT matrix to an I matrix:
DATA TIMAT/1,0,0,0,0,1,¢,0,0,0,1,0,0,0,0,1/
C Get the random number seed

WRITE (6,*) 'Type in a 6-digit random number seed’
READ (5,*) ISEED

C Open input files and output data file

OPEN (8, NAME='TELE-VAR.DAT’, STATUS='QLD’)
OPEN (9, NAME='TELE-POS.DAT’, STATUS='NEW’)
OPEN (10,NAME='INPUT.LCAT’, STATUS='0QLD’)

C Input parameters

read (10,%*)

read (i0,*) dtw,ddw,aaw,aliw,blw
read (10,*) dtil,ddl,aal,all,bll
read (10, *) dt2,dd2,aaz2,al2,bl2
read (10,*) dt3,dd3,aa3,al3,bl3
read (10,*) dt4,dd4,aad,ald,bld
read (16, *) dtS,dds5,aab5,als,bls
read (130,*)

read (10, *) df6,th6,si6,px6,pyé,pz6
read (1G,™)

read (10, *) nobs,n,dangle,dlenth,magnx,magnl

C Add encoder Offsets:

D -

= DTW + DANCLE
1 = DT1 + DANGLE

RIS
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DT2 = DTZ2 + DANGLE
DT3 = DT3 ! de
DT4 = DT4 + DANGLE
DT5 = DTS5 + DANGLE

fined

C Set link parameters fcr the manipulator:

ALW = ALW + DANGLE
ALl = ALl + DANGLE
AL2 = AL2 + DANGLE
AL3 = AL3 + DANGLE
AL4 = AL4 + DANGLE
ALS5 = ALS + DANGLE
AAW = AAW + DLENTH
AAl = AAl + DLENTH
AA2 = AA2 + DLENTH
AA3 = AA3

AA4 = AA4 + DLENTH
AAS = AAS5 + DLENTH
DDW = DDW + DLENTH
DD1 = DD1 + DLENTH
DD2 = DD2 + DLENTH
DD3 = DD3 + DLENTH
DD4 = DD4

DC> = DD5 + DLENTH
BLW = BLW

BL1l = BL1 ! defined
BL2 = BL2

BL3 = BL3 + DANGLE
BL4 = BLY4

BLS = BLS ! defined
DF6 = DFé + DANGLE
THe = 0.0

SIie = 0.0
PX6 = PX6 + DLENTH
PY6 = (0.0

P26 = PZ6 + DLENTH
D3 = DD3

C Loop NOBS times
U I = 1, NOBS

C Iritialize the T matrix to an

[ON @)

J=1
K=1
T
ENDDC
ENDDO

, 4
, 4
J,K) = TIMAT(J,K)

oo

C Manipulatcr jeoint angle input:
READ (8, *) THETAL, THETAZ,

THW

THI

W
DT1 + THETAL

' defined

' defined

' defined
! defined

! defined

I matrix:

THETA3, THETA4,

THETAS,

THETA®




TH2
TH3
TH4
THS =
FIé =

it

= DT2 + THETA2

DT3

= DT4 + THETAA4

DTS + THETAS
DF6 + THETA®

DD3 = D3 + THETA3

C Compute

CALL TRANSFORM

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL

C Compute

CALL
CALL
CALL
CALL
CALL
CALL
CALL

the T matrices, TW thru T6:

TH1,
TH2,
TH3,
TH4,
THS,

T:

TRANSFORM ( ALl, AAl, DD1,
TRANSFORM ( AL2, AAZ2, DD2,
TRANSFORM ( AL3, AA3, DD3,
TRANSFCRM ( AL4, AA4, DD4,
TRANSFORM ( ALS, AAS, DDS,
T3RPY ( FI6, TH6, SIe, TRPY )
T3XYZ ( PX6, PY6, PZ6, TXYZ )
MATMULC ( Te, TRPY, TXYZ )
the overall transformation,
MATMULA ( T, TW )

MATMULA ( T, T1 )

MATMULA ( T, T2 )

MATMULA ( T, T3 )

MATMULA ( T, T4 )

MATMULA ( T, TS )

MATMULA ( T, T6 )

C Generate the random noise

CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL

22
N
(I

22%
[
oo

&g
[SR0
o

RANDOM (ISEED, RNX)
RANDOM (ISEED, RNY)
RANDOM (ISEED, RNZ)

RANDOM (ISEED, RN1)
RANDOM (ISEED, RN2)
RANDOM (ISEED, RN3)
RANDOM (ISEED, RN4)
RANDOM (ISEED, RNS)
RANDOM (ISEED, RN6)

= MAGNX* ( .0*RNZ
MAGN1*( 2.0*RN:I
MAGNI*( 2.0*RNZ
MAGNiI*( 2.0*RN3
GN1*( 2.0*RNY4
MAGN1*( 2.0*RNS

= MAGNIi*( Z.C*RN6

RNX = MAGNX*{( 2.0*RNX
= MAGNX*( 2.0*RNY 1
inl

bbb pd b

o s

[eNe)

QO OOOO

— e e v

BL1,
BL2,
BL3,
BL4,
BL5S,

( ALW, AAW, DDW, THW, BLW,

Tl
T2
T3
T4
TS5

C Add ncise tc measurements and encoder readirgs

e

) = T(i1,4) + RNX
) = T(Z,4) = RNY
) T(3,4) + RNZ
i = THETAL +RNI

wn
w

e




THETAZ = THETAZ2 +RN2

THETA3 = THETA3 +RN3
THETA4 = THETA4 +RN4
THETAS = THETAS5 +RN5

THETA6 = THETA6 +RNG6

C Store the manipulator joint vector and measured tool pose
WRITE (9,991) THETAl, THETAZ2, THETA3, THETA4, THETAS, THETA6
WRITE (9,992) T(1,4)
WRITE (9,992) T(2,4)
WRITE (9,992) T(3,4)
WRITE (9, *)

C Format below decides the digits of accuracy of simulation data

991 FORMAT ( 6F12.6 ) !'Joint vector data
992 FORMAT ( F12.5 ) !Measurement data

C End do-loop for counter I
ENDDO

WRITE (6,*) ’'Data stored in F12.5, Fl2.4 format’

CLOSE (8)
CLOSE (9)
STOP
END
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SUBROUTINE RANDOM (x,z)
REAL FM, FX, 2

INTEGER A4, X, I, M

DATA I/1/

F (I .EQ. 0 ) GO TO 1000

I
I
M= 2 ** 20
F
A

1000
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PROGRAM TELEBAR

This program generates a set of joint angles for the calibration
of the MODEL G manipulator using a ball bar to constrain the end
point of the manipulator.

INTEGER LDFJAC, M, N, obs, nobs
PARAMETER (LDFJAC=3, M=LDFJAC, N=6)

REAL*§ DT1, DT2, DT3, DT4, DTS

REAL*8 DD1, DD2, DD3, DD4, DD5S

REAL*8 AAl, AA2, AA3, AA4, AAS

REAL*8 ALl, AL2, AL3, AL4, ALS

REAL*8 BL1, BL2, BL3, BL4, BLS

REAL*8 DF6, FI6, TH6, SI6, PX6, PY6, PZ6
REAL*8 XW, YW, 2W

INTEGER infer, ier,iopt,nsig,maxfn

REAL*8 FJAC(LDFJAC,N), xjtj((n+l)*n/2), xjac(ldfjac,n)
REAL*8 parm(4), f (ldfjac), work{(5*n)+(2*m)+((n+l)*n/2))
REAL*8 X (N)

real*8 r,phimax,phimin, thetamax,thetamin,phi,theta
real*8 xb,yb,zb,ssq, rr,magnx,magnl

EXTERNAL TELE ARM

INTEGER I, J, K
REAL*8 TDES(4,4), qmax(6), gmin(6), SCALE, DANGLE, DLENTH, NUM
COMMON /PDATA/ TDES, DANGLE, DLENTH, r
COMMON /KIN/ DT1,DT2,DT3,DT4,DTS,
& AL1,AL2,AL3,AL4,ALS,
AAl,AA2,AA3,AA4,AAS,
DD1,DD2,DD3,DD4,DDS,
11,BL2,BL3,BL4,BL5,
XW, YW, ZW,
DF6,THé,SI6,PX6,PY6,P26

e

Joint angle ranges

data gmin/-30.0,-45.0,0.0,-180.0,0.0,-180.0/
data gmax/25.0, 45.C, 762.6, 180.0, 90.0, 180.0/

Initialize data variables
obs=0
Upen data files for input

OPEN (10, NAME=’TELE-SCLN.DAT’, STATUS='NEW')
open (9, NAME=’INPUT.DAT’, STATUS='01d’)

Read input kinema:ti: data

read (9,*)

read (9,*) =xw,yw,zw

read (9,*) dti,ddl,aal,all,bll
read (9,*) doZ,ddZ,aal,alz,pll
read (9,*) dt3,dd3,aa3,all,bls
read (9,*) dt4,dd4d,aad,ald,bld




]

read (9,*) dt5,dd5,aa5,als,bls

read (9,%*)
read (9,*) dfé6,th6,si6,px6,py6,pz6
read (9,*)

read (9,*) nobs,r,dangle,dlenth,magnx,magnl

close (9)
C Adjust nominal values

xw=xw+dlenth
yw=ywtdlenth

dt2=dt2+dangle
dtd4=dt4+dangle
dt5=dtS+dangle v

all=all+dangle
al2=al2+dangle
al3=al3+dangle
al4=al4+dangle
alS=al5+dangle

aal=aal+dlenth
aal=aa2+dlenth
aad4=aad+dlenth
aab=aaS5+dlenth
ddl=ddl+dlenth
ddZ2=dd2+dlenth
dd3=dd3+dlenth
ddS=dd5+dlenth
bl3=bl3+dangle
df6=df6+dangle
px6=pxé+dlenth
pzé=pz6+dlenth

C Limits on bar rotation
phimax=180.0
phimin=-180.0
thetamax=90.0
thetamin=-90.0

C Get random number seed

c ISEED = 123456

write (6,*) "Type in a 6-digit random number seed’
read (5,*) iseed

C Write NOBS to TELE-SOLN.DAT
write (10, *} ncbs
C Start of main loop

1010 obs=cbs+1

56




C Set joint angles to zero

do i=1,n
x(1)=0.0C
enddo

C Get random bar angles

1000 call random (iseed,num)
phi=phimin+ (phimax~-phimin) *num
call random (iseed, num)
theta=thetamin+ (thetamax-thetamin) *num

C Calculate end point of the bar

xb=r*cosd(theta)
yb=r*sind(theta) *cosd (phi)
zb=r*sind(theta) *sind(phi)

C Reacheability calculation

if (z .lt. 0.0) go to 1000

C Establish desired tool pose

do ii=1,4

do 3j3=1,4
TDES (11, 33)=0.0

enddo

enddo

TDES (1, 4) =xb
TDES (2, 4) =yb
TDES (3, 4) =zt
TDES(4,4) = 1.0

C Call IMSL ZXSSQ for inverse kinematic solution
nsig=4
eps=0.0
delta=0.0
maxfn=500
iopt=1
ixjac=1df jac
CALL ZXSSQ(tele_arm,m,n,nsig,eps,delta,maxfn,iopt,parm,x,
& ssq, £,xjac, ixjac, xjtj,work, infer, ler)

C Print results to 2 decimal places

write{o,*) obs,ssq, iseed
WRITE (10,*) X(l), X(2), X(3), X(4), X(5), X(6)

C Continue for cther bar angies

if (obs .1lt. nobs) go toc 18I0

n
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WRITE (6, *) XW,YW,2W
END
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SUBROUTINE tele ARM ({(X,M,N,F)

This subroutine calculates the non-linear function for the use of
the IMSL routine 2XSSQ. It is the forward kinematic solution for

the MODEL G manipulator.

INTEGER M, N
REAL*8 X(N), F (M)

INTEGER II, JJ

REAL*8 DT1, DT2, DT3, DT4, DTS

REAL*8 DD1, DD2, DD3, DD4, DD5

REAL*8 AAl, AA2, AA3, AA4, AAS

REAL*8 ALl, AL2, AL3, AL4, ALS

REAL*8 BL1, BL2, BL3, BL4, BL5

REAL*8 DF6, FI6, TH6, SI6, PX6, PY6, PZ6
REAL*8 XW, YW, 2W, D3

REAL*8 TH1, TH2, TH3, TH4, THS

REAL*8 TQ(4,4), T1(4,4), T2(4,4), T3(4,4), T4(4,4)
REAL*8 T5(4,4), T6(4,4), trpy(4,4), txyz(4,4)
REAL*8 TIMAT(4,4), T(4,4)

REAL*8 disqg,dis

INTEGER I, J, K
REAL*8 TDES(4,4), DANGLE, DLENTH, r

COMMON /PDATA/ TDES, DANGLE, DLENTH, r

COMMON /KIN/ DT1,DT2,DT3,DT4,DTS,
ALl,AL2,AL3,AL4,ALS,
AAl,AAZ2,AA3,AR4, AAS,
DD1,DD2,DD3,DD4,DDS,
BL1,BLZ2,BL3,BL4,BLS,
XW, YW, ZW,
DF6,TH6,S16,PX6,PY6,PZ6

R R

Initialize the TIMAT matrix to an 1 matrix:
DATA TIMAT/i1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1/

Initialize the T matrix to an I matrix

DG IT = 1,4
e JJ = 1,4
T(II1,JJ) = TIMAT(II,JJ
ENDDC
ENDCO

Manipulator Joint angles

THI = DT1 + X (1)

THZ = DT2 + X(2)
TH3 = DT3

TH4 = DT4 + X(4)
THS = DTS5 + X (5)
FIt = DF6 + X(6)

on
[0 ¢]




D3 = DD3 + X(3)
C Compute the T matrices, Ti1 thru Té:
CALL t3xyz (xw,yw,zw,T0)

CALL TRANSFORM ( ALl, AAl, DD1, TH1, BL1l, T1 )
CALL TRANSFORM ( ALZ, AA2, DD2, THZ2, BLZ, T2 )
CALL TRANSFORM ( AL3, AA3, D3, TH3, BL3, T3 )
CALL TRANSFORM ( AL4, AA4, DD4, TH4, BL4, T4 )
CALL TRANSFORM ( ALS5, AAS, DDS, TH5, BLS, TS )

CALL t3rpy ( £
CALL T3XYZ ( P
CALL matmulc (

ié, thé, si¢, trpy )
X6, PL6, PZ6, txyz )
t6, trpy, txyz )

C Compute the overall transformation, T:

CALL MATMULA ( T, TO )
CALL MATMULA ( T, T1 )
CALL MATMULA ( T, T2 )
CALL MATMULA ( T, T3 )
CALL MATMULA ( T, T4 )
CALL MATMULA ( T, TS5 )
CALL MATMULA ( T, T6 )

C Calculate the function F
f(l1)=t(l,4)~-tdes (1, 4)
f(2)=t(2,4)-tdes (2, 4)
£(3)=t(3,4)-tdes (3, 4)

RETURN
END

AR R R R S
SUBROUTINE RANDOM (x,2)

C This subroutine generates random numbers in the range 0-1
C using a supplied seed x, the returned random number being z.

REAL FM, FX, Z
INTEGER A, X, I, M
DATA I/1/

F (I .EQ. 0 ) GO TO 1000

10C¢C = MCC( A*X M)
FX= X
= FX; M
RETURN
ENC

C I AN R S R R E R R R AL AR R REE LR R EE R RS SR EEESREREERERSEEEESEENIESEEESESSEI

on
(Ne]




[eNeKe]

[

(@]

AXEAXAANKXT XA AKX A XXX XA AARA AT XA KA X AAAXRA XA EAAXNAXRAXAKXRAKN A AR AXTKEAARAARRAANRAX AT Rk XKk * X

PROGRAM ID6

Robot Identification using the Non-linear Least Squares method.
Simulation date is read for the MODEL G manipulator 7 :-om
the date file TELE-SOLN.DAT

Change parameter LDFJAC to change the number of observations,
set LDFJAC = Number of observations

INTEGEK LDFJAC, MM, M, NN, N, NSIG, MAXFN, IOPT, IXJAC, INFER, IER
PARAMETER (LDFJAC=90, MM=LDFJAC, NN=22)

REAL*8 FJAC (LDFJAC,NN), XJITJ((NN+1)*NN/2)

REAL*8 PARM(4), F(LDFJAC), WORK((5*NN)+(2*MM)+((NN+1)*NN/2))
REAL*8 X (NN)

EXTERNAL TELE ARM

REAL*8 DANGLE, DLENTH, TQ, DQ, EPS, DELTA, SSQ
REAL*8 SQERK1, SQERR2

REAL*8 XW, YW, ZW

REAL*§ DT?, DTZ2, DI3, DT4, DT5

REAL*8 DD1, DD2, DD3, DD4, DD5

REAL*8 AAl, AA2, AA3, AAR4, BAS

REAL*8 ALl, ALZ2, AL3, AL4, ALS

REAL*8 BL1, BL2, BL3, BL4, BLS

REAL*8 FI6, DF6, TH6, SI&, PX6, PY6, Pz6

INTEGER I, J, K, NOBS, MAXNOBS

REAL*8 magnx,magnril

PARAMETER (MAXNCBS=100)

REAL*8 TET1 (MAXNOBS), TETZ2(MAXNOBS), TET3(MAXNOBS)

REAL*8 TET4 (MAXNOBS), TETS(MAXNOBS), TET6 (MAXNOBS)

REAL*8 R

COMMON /PDATA/ NOBS, TET1, TETZ2, TET3, TET4, TET5, TET6, R

COMMON /KIN/ DT1,DT2,DT3,DT4,DT5,

& ALl,AL2,AL3,AL4,ALS,
LAl, AAZ, AA3, AR4, AAS,
DCi,DD2,D03,0LD4,DDS,
BLl,BL2,BL3,BL4,BLS,
XW, YW, 2W,

DF6, TH6,SI6,PX6,PY6,P26

e R R

Open data files for inputs and results
OPEN (8, NAME='RESULT.DAT’, STATUS='NEW’)
OPEN (9, NAME='TELE-SOLN.DAT’, STATUS='CLD")
OPEN (10,NAME='INPUT.DAT’, STATUS='CLD’)

Read input parameters

read (10,*)

read (10, *) xw,yw,zw

read (10,*) dtl,ddl,aal,all,bil
read (1C,*) dt2,dd2,aaz,ai2,blz
read (1C,*) dt3,dd3,aal3,al3,bls
reas (10,*) dt4,dd4d,aad,ald,bld
read (10,*; «:z5,dd5,aat.a.l5,kbls
read (15,*)




read (.0,*) dfé,thé,si6,px6,py6,pzb
read (10, *)
read (10, *) nobs,r,dangle,dlenth,magnx,magnl

CLCSE (10)
C Initialize data variables

X(1)=XW
X{2)=YW

X(3)=DD1
X (4)=AAl
X(5)=ALl1

X(6)=DT2

X(7)=DD2
X(8)=AA2

X(9)=AL2

X(10)=CD
X(11)=al3
X(12)=BL3

X{13)=D7T4

X(14)=AA4
X(15)=AL4
X(16)=DT5
X(17)=DD5
X(18)=AA5
X{19)=AL

X(20)=DF6
X(21)=PX¢t
X(22)=PZ¢

R=R+MAGNX
C Read simulated joint data and tooi pose
READ (9, *) NOBS

DG J = 1, NOBS
(

READ (9,*) TET1(J), TET2(J), TET3(J), TET4(J), TETS(J), TETE (J)
ENDD2OT
CLGCSE (9)

C Call IMSL rcutine for non-linear identification

ARM,M,NN,NSIG,EPS,DELTA, MAXFN, I0PT,

1%
PLEM, X, $30, F, FJAC, IXJAC, XJTJ, WORK, INFER, IER)




C Save results to data file

WRITE (8, *)

WRITE (8,*) ‘XW, YW, ZW'

WRITE (8,*) X(1), X(2), 2ZW

WRITE (8, *)

WRITE (8,*) ’DTi, DD1l, AAl, ALl1l, BL1l’

WRITE (8,*) 0.0, X(3), X(4), X{(5), 0.0
WRITE (8, %)

WRITE (8,*) ’DT2, DD2, AA2, ALZ2, BL2’

WRITE (8,*) X(6), X(7), X(8), X(9), 0.0
WRITE (8, *)

WRITE (8,*) ’DT3, DD3, AA3, AL3, BL3’

WRITE (8,*) 0.0, X(10), 0.0, X(11), X(12)
WRITE (8, *)

WRITE (8,*) *DT4, DD4, AA4, AL4, BL4'

WRITE (8,*) X(13), 0.0, X(14), X(15), 0.0
WRITE (8, *)

WRITE (8,*) ‘DTS, DDS5, AAS, ALS, BL5’

WRITE (8,*) X(16), X{(17), X(18), X(19), 0.2
WRITE (8, *)

WRITE (8,*) ’ DFé, TH6, SI6, PX6, PY6, PZ6, R’
WRITE (&,*) X(20), 0.0, 0.0, X(21), 0.0, X(22), R

¢ Restore initial values of input parameters

open {(10,name=’input.dat’,status=’0ld’)
read (10, *)
read (10,*) xw,yw,zw
read (10,*) dtl,ddl,aal,all,bll
read (1C,*) dt2,dd2,aa2,al2,bl2
read (10, *) dt3,dd3,aa3,al3,bl3
read (10,*) dt4,dd4,aad,ald,bld
read (10,*) dt5,dd5,aas,ald,bl5
read (1C, *)
read (10,*) dfé6,thé,si6,px6,pyb6,pzb
read (10, *)
read (1C,*) nobs, r,dangle,dlenth,magnx,magnl
CLCSE (10)

C Calcuilate root mean square error in identification

TQ
DQ

DANGLE
DLENTH

oW

C Errcr in identification (angular parameters)

SQERR1 =
& (AL14+TQ=-X(5)) **2 +(DT2+TQ-X(6)) **2 +(AL2+TQ-X(9))**2
& + (AL3+TQ=-X(11)) **2
& +(BL3+TQ-X(12))**2 +(DT44+TQ~-X(13))**2
& +(AL4+TQ-X(15)) **2 + (DTS5+TQ-X(16)) **2
& + {ALS+TQ-X(19)) **2
& +(DF6+TQ-X(20))**2
SQERR1 = ISQRT( SQERR1/10 )
C Error iIn identification (length parameters)

SQERRZ =
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& (DD1+DQ-X(3)) **2 + (AA1+DQ-X(4)) **2

& +(DD2+DQ=-X (7)) **2 + (AAR2+DQ-X(8)) **2

& +(DD3+DQ-X(10) ) **2 + (AA4+DQ-X(14)) **2
& +(DD5+DQ-X(17)) **2 + (AAS+DQ-X(18)) **2
& +(PX6+DQ-X(21)) **2 +(P26+DQ-X(22)) **2
&  +H(xwtdg-x(1l))**2 +(yw+dg-x(2) ) **2
SQERRZ = DSQRT{ SQERRZ2/12 )

WRITE (8, *)

WRITE (8,*) ‘RMS PARMS (LENGTH), RMS PARMS (ANGLE)’
WRITE (8,*) SQERR2, SQERR1

WRITE (6,*) ’'RMS PARMS (LENGTH), RMS PARMS (ANGLE)’
WRITE (6,*) SQERR2, SQERR1

WRITE (8, *)

WRITE (8,*) ’INFER, IER,NOBS,NSIG’
WRITE (8,*) INFER, IER,NOBS,NSIG
WRITE (6,*) ’INFER, IER,NOBS,NSIG’
WRITE (6,*) INFER, IER,NOBS,NSIG

WRITE (8, *)
CLCSE (8)
END
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SUBROUTINE TELE ARM (X, M, N, F)

This subroutine calculates the non-linear function for the use of
the IMSL routine ZXESQ. It is the forward kinematic solution for
the MODEL G manipulator.

INTEGER M, N
REAL*8 X(N), F(M)

INTEGER II, JJ

REAL*8 XW, YW, ZW

REAL*8 DT1, DTI2, DT3, DT4, DTS

REAL*8 DD1, DDZ, DD3, DD4, DD5S

REAL*8 AAl, AAZ, AA3, AA4, AAS

REAL*8 ALl, ALZ, AL3, AL4, ALS

REAL*8 BL1, BLZ, BL3, BL4, BLS

REAL*8 fi6, dfé, the, si6, PXe, PY6, PZ6, D3

REAL*8 TH.1, TH2, TH3, TH4, THS

REAL*8 TO0(4,4), T1l(4,4), T2(4,4), T3(4,4), T4(4,4)
REAL*8 T5(4,4), T6(4,4), trpy(4,4), txyz(4,4)
REAL*8 TIMAT (4,4), T(4,4)

INTEGER I, J, K, NOBS, MAXNOBS

PARAMETER (MAXNOBS=100)

REAL*8 TET1 (MAXNOBS), TETZ2 (MAXNOBS), TET3 (MAXNOBS)

REAL*8 TET4 (MAXNOBS), TETS(MAXNOBS), TET6 (MAXNOBS)

REAL*8 R, RR

CCMMON /PDATA/ NOBS, TETi, TETZ2, TET3, TET4, TETS, TET6, R

COMMON /KIN/ DTL,DT2,DT3,0T4,DTS,
& AL1,ALZ2,AL3,RL4,ALS,
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AA1l,RAA2,AA3,AA4, AAS,
DD1,DD2,DD3,DD4,DDS,
BLl1,BL2,BL3,BL4,BLS,
XW, YW, ZW,
DF6,TH6,SI6,PX6,PY6,P26

R

C Initialize the TIMAT matrix to an I matrix:
DATA TIMAT/1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1/

C Set parameters for the manipulator:

XW = X (1)
YW = X(2)
DD1 = X (3)
AAl = X (4)
ALl = X(5)
DT2 = X(6)
DD2 = X(7)
AA2 = X (8)
AL2 = X(9)
DD3 = X(10)
AL3 = X(11)
BL3 = X(12)
DT4 = X(13)
AA4 = X (14)
AL4 = X (15)
DTS = X(16)
DD5 = X(17)
AAS = X (18)
ALS = X(19)
DF6 = X(20)
PX6 = X(21
PZ6 = X(22)

C Loop NOBS times

K =20
DO J = 1, NOBS

C Initialize the T matrix tc an I matrix

DO II = 1,4
DO JJ = 1,4
T(II,JJ) = TIMAT(II,JJ)
ENDDO
ENDDO

C Manipulator joint angles

TH1 DT1 + TET1(J)
TH2 DT2 + TETZ(J)
TH3 = DT3

TH4 = DT4 + TET4(J)
THS = DTS + TET5(J)
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FI6 = DF6 + TET6(J)
D3 = DD3 + TET3(J)

C Compute the T matrices, Tl thru Té6:
CALL T3XYZ (XW,YW,ZW,T0)

CALL TRANSFORM
CALL TRANSFORM
CALL TRANSFORM
CALL TRANSFORM
CALL TRANSFORM

ALl, AAl, DD1, TH1l, BL1, Tl )
AL2, AA2, DD2, TH2, BL2, T2 )
AL3, AA3, D3, TH3, BL3, T3 )
AL4, AA4, DD4, TH4, BL4, T4 )
ALS, AAS, DDS, THS, BL5, TS5 )

—~ o o

CALL t3rpy ( fi6, thé, sié, trpy )
CALL T3XYZ ( PX6, PY6, PZ6, txyz )
CALL matmulc ( t6, trpy, txyz )

C Compute the overall transformation, T:

CALL MATMULA ( T, TC )
CALL MATMULA ( T, T1 )
CALL MATMULA ( T, T2 )
CALL MATMULA ( T, T3 )
CALL MATMULA ( T, T4 )
CALL MATMULA ( T, TS5 )
CALL MATMULA ( T, T6 )

C Calculate the function F

rr=dsgrt { t(l,4)*t(1l,4)+t({2,4)*t(2,4)+t(3,4)*t(3,4) )
f(j)=dabs( rr-r)

C End the do-locop for counter J
ENDDO

C Compute RMS error
sumsg=0.0
do j=1, nobks
sumsg=sumsq+£ (3) *£{3)
enddo
rms=sqgrt (sumsg/nobs)

write (6,*) rms

RETURN
END

C IR E SR EREEE R SRR SRS RS SRS SRR R RS SRR RS R RS EERRRRERERE R RS REEERESEEEESERSEEESEES]
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C AA KA A A AA XA A A KA A AXTAA AR AR AA AT RAA KR TA AT KA AATARAAARXNAAAXRKRARAAAAA A AN A AR KRR AKRRAKRNKR KK

PROGRAM VERIFY

C This program generates the six-dof pose error for the MODEL G
manipulator.

C It contains the identified calibration parameters and the exact
parameter.

C It uses a data file of verification joint angle sets POSEVER.DAT, and
the

C file RESULT.DAT from the program ID6.

INTEGER I, J, K, NPOSES, N

REAL*8 DANGLE, CLENTH

REAL*8 P(200),CR(200),W1(200),W2(200),W3(200)

REAL*8 DT(5),dd(S),aa(5),al(5),bl(5), world(3)

REAL*8 eDT (5),edd(5),eaa(5),eal(5),ebl(5), eworld(3)
REAL*8 edfé¢, EFI6, ETHé, ESI6, EPX6, EPY6, EPZ6
REAL*8 THETA(1000,6), TDELTA(4, 4)

REAL*8 T0(4,4), Ti(4,4), T2(4,4), T3(4,4)

REAL*8 T4(4,4), TS5(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)
REAL*8 TIMAT(4,4), T(4,4), et (4,4

REAL*8 DTi1, DT2, D73, DT4, °TS
REAL*8 DD1, DC2, DD3, D04, LIS
REAL*8 AAl, AAZ, AA3, AA4, AAS
REAL*8 ALl1, AL2, AL3, AL4, ALS
REAL*8 BLi, BLZ, BL3, BL4, BLS
REAL*8 DF6, FI6, TH6, SI€, F¥:i, FYc, PZE

REAL*8 XW, YW, 2ZW
COMMON TIMAT, THETA

C Irnitialize the TIMAT matr.x %2 ar I matris:

DATA TIMAT/1,(,C,C,C,:,0,0,0,0,1,0,5,C6,0,1/
C
OPEN
OPEN STATLE='OL
CPEN (11, NAME='result.DAT’, STATUS='CLD’)
¢ <ead input parameters

read (13, *)

read (10, *) world(l),wsrid(2),world(3)
read (iC,*) dtl,ddl,aal,a’il,bll

read (10,*) dt2,dd2,aal,alil,bll

read (10, *) d4d+2,ddZ%,aa3,al3, k12

read (10,*) dt4,dd4,aa4d,als,bld

read (.0, *) d:5,dd5,aas%,a.5,bls

read (1C, *)

read (10,*) dfé,thé,si6,px€,py€,pzé
read (iC,*)

read (10, *) nobhs,r,dangle,dlenth,magnx,magni

CLCSE (1)

¢ Read .in Jeoint angie sets fcr verificaticn poses



read (9, *) nposes

do i=1,nposes

read (9, *)theta(i, 1), theta(i,2),theta(i,3),theta(i,q),
& theta (i, 5),theta(i,6)

enddc

close (9)

C Set exact link parameters for the manipulator:

dt (1) = dtl ! defined
dt (2) = dt2 =+ dangle
de (3) = dc3 ! defined
t{4) = dz4 + dangle
dr (%) dtS + dangle

world(l) = world(l) + dlenth
world(2) = world(2) + dienth
al(l) = all + DANGLE

al(2) = alZz + DANGLE

al(3) = al3 + DANGLE

al(4) = al4 + DANGLE

al(5) = alb + DANGLE

AA(1) = aal + DLENTH

AA(2) = aa2 + DLENTH

AA(3) = aal ' defined
AA(4) = aa4 +~ DLENTH

AA(5) = aa5 + DLENTH

DD(i1) = dd. + DLENTE
DD(2) = ddZ + DLENTH
DD(3) = dd3 + DLENTH
DD (4) = dd4 ' defined
DD(5) = dd5 + DLENTH

L(l)y = bll ' defined
BL(2) = pli2d ! defined
BL(3) = 13 + DANGLE
BL(4) = tl4 ' defined
BL(5) = Lkla ' defined
DFe = DF% + Dang.e
THe = 0.C
Sie = C.3

PX6 = PX€ - DLENTH
PY6 = O

EZ6 = PZ6 -+ DLENTH

c Read in and set up estimated parameter table

read(i1i,™)
read(ii, *)
read(ll,*) ewcrld(l),ewcrid(2),eworld(3)

de 1=1,5
read (i11,7*)
read (11,*
read (1i,*) edt(i),edd(i),eaal(i),eal(i),ebl ()

enaac

(&)
~J




O 00

20000

read (11, *)
read (11, *)
read(ll,*) edf6,eth6,esib6,epx6b,epyt,epzb,r

do kk=1,3
write (6, *)world(kk),eworld(kk)
enddo

do 1ii=1,6

write(6,*) 1ii

write(é,*)al(ii),eal(ii),aa(ii),eaa(ii),dd(ii),edd(ii),
& Dbl(ii),ebl(ii),dt(ii),edt (ii)

enddo

Main loop through NPOSES joint angle sets
do k=1, nposes

call fks (k,world,dt,al,aa,dd,bl,£fi6,th6,si6,px6,py6,pz6,t)
call fks (k,eworld,edt,eal,eaa,edd,ebl,efi6,eth6,esi6,epx6,
& epy6,epzb6,et)

Compute the differential tool matrix
call matsub (tdelta,t,et)
Cormnute the pose errors

poserr=sqrt (tdelta(l,4) **2+tdelta(2,4) **2+tdelta(3,4) **2)
orerrl=(tdelta(3,2)-tdelta(2,3))/2

orerr2=(tdelta(l, 3)-tdelta(3,1))/2
orerr3=(tdelta(2,1l)-tdelta(i,2)})/2

orerr=sqgrt (orerrl**2+orerr2**2+orerr3**2)

Update total error counts

posterr= (poserr+(k-1) *posterr)/k
orterr =(orerr +{(k-1)*orterr)/k

End of main loop
enddc

write (6,*) ’'Position error, orientation error’
write (6,*) posterr,orterr

OPEN (19, NAME='VER.DAT’, STATUS='0OLD’)

READ (19,*) NR

IF(NR.GT.0) READ{19,*) (P(I),OR(I),Wi(I),W2(I),W3(I),I=1,NR)
NR=NR+1

p(nr)=POSTERR

or(nr)=0RTERR

wl(nr)=WORLD(1)-DLENTH

w2 (nr)=WORLD (2) -DLENTHE

w3 (nr)=WORLD (3)

REWIND 19

WRITE(19,*) nr

WRITE(19,*) (P(I),OR(I),Wi(I),W2(I),W3(I),I=1,NE)
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CLOSE (19)

end

c AAKKKKXA AKX KE A KA AT AKX AKX A A AKRKA A AR KT KI A XA RAANKAKRAKARARARRKA KKK R XA RKRK KKK K KR Kk %ok ok k%

subroutine fks (n,world,dt,al,aa,dd,bl,dfé,thé,sis,
& px6,py6,pzb,t)

REAL*8 TO(4,4), T1(4,4), T2(4,4), T3(4,4)

REAL*8 T4(4,4), T5(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)
REAL*8 TIMAT(4,4), T(4,4), dt(5),al(5),aa(5),dd(5),bl(5)
real*8 theta(1000,6), ang(5), world(3)

common timat,theta

C Initialize the T matrix to an I matrix:

DC J=1, 4
DO K=1, 4
T(J,K) = TIMAT(J,K)
ENDDO
ENDDO

C Set up the joint angles
do 1i=1,5

ang(i)=theta(n, i)
enddo

fié=theta(n, 6)+dfeé

C Compute the T matrices, Tl thru T6:
call t3xyz (world(l),world(2),world(3),T0)
CALL TRANSFORM (al(l),aa(l),dd(l),ang(l),bl(1l),T1)
CALL TRANSFORM (al(2),aa(2),dd(2),ang(2),bl(2),T2)
CALL TRANSFCORM (al(3),aa(3),ang(3),dt(3),bl(3),T3)
CALL TRANSFORM {(al(4),aa(4),dd(4),ang(4),bl(4),T4)
CALL TRANSFORM (al(5),aa(5),dd(5),ang(5),bl(5),T5)
CALL T3RPY (fi6,th6,si6,TRPY )
CALL T3XYZ (px6,pyé,pz6,TXYZ )
CALL MATMULC ( Te, TRPY, TXYZ )

C Compute the overall transformation, T:

CALL MATMULA (T, TO )
CALL MATMULA ( T, T1 )
CALL MATMULA ( T, T2 )
CALL MATMULA ( T, T3 )
CALL MATMULA ( T, T4 )
CALL MATMULA ( T, TS )
CALL MATMULA ( T, T€ )

return
end

c (I E AR B S RERESE SRS ESERESEEREERER S SESEREEELEEEEREEE S REEEEEEEREEEEEEEEESSE]
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